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Abstract— Broadcasting in wireless networks, unlike wired
networks, inherently reaches several nodes with a single trans-
mission. For omni-directional wireless broadcast to a node,
all nodes closer will also be reached. This property can be
used to compute routing trees which minimize the sum of the
transmitter powers. It has been shown that this problem is
NP-complete. In this paper, we present the r-shrink proce-
dure, a heuristic for improving the solutions obtained using
fast sub-optimal algorithms. Specifically, we focus on the low-
complexity BIP algorithm and Prim’s minimum spanning tree
algorithm and show through extensive simulations that better
solutions are obtained almost always, with considerably lower
tree power, if the proposed procedure is used to improve the
trees generated using these algorithms.

I. Introduction

Broadcasting/multicasting in wireless networks is fun-
damentally different as compared to wired networks, since
multiple nodes can be reached by a single transmission.
This, of course, assumes that the nodes are equipped with
omni-directional antennas, so that if a transmission is di-
rected from node i to node j, all nodes which are nearer to
i than j will also receive the transmission. This is known as
the “wireless multicast advantage” [1]. For a given network
with an identified source node, the minimum power broad-
cast (MPB) problem in wireless networks is to communi-
cate to all remaining nodes, either directly or hopping,
such that the overall transmission power is minimized. It
is shown in [2] that the MPB problem in wireless networks
is NP-complete, implying that optimal polynomial time
algorithms are unlikely to exist.

Although previous work in this area focused on a “link-
based solution”, Wieselthier et al [1] note that a “node
based” approach is needed for wireless environments.
The Broadcast Incremental Power (BIP) algorithm sug-
gested by them is a simple sub-optimal heuristic for con-
structing minimum power broadcast trees in wireless net-
works. In this algorithm, new nodes are added to the tree
on a minimum incremental cost basis, until all intended
destination nodes are included. It was subsequently shown
in [3] that the BIP algorithm has an approximation ra-
tio between 13/3 and 12. Other techniques that have
been suggested for solving this problem include an internal
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nodes based broadcasting procedure by Stojmenovic et al
[4], an evolutionary approach by Marks et al [5], a swarm
based procedure by Das et al [6] and a localized algorithm
by Cartigny et al [7]. Integer linear programming mod-
els for optimal solution of the MPB problem have been
proposed in [8].

In this paper, we discuss the r-shrink procedure, a sim-
ple local search heuristic for improving sub-optimal MPB
trees in wireless networks. Given an initial tree (which can
be obtained using a minimum spanning tree algorithm or
the BIP algorithm, for example), the transmission radii of
the transmitting nodes in the tree are shrunk sequentially
and an attempt is made to better accommodate the nodes,
which have been disconnected from the tree as a result of
the shrinkage operation, from other suitable nodes in the
network. This process is repeated till no further improve-
ment is possible.

II. Network Model

We assume a fixed1 N -node network with a specified
source node which has to broadcast a message to all other
nodes in the network. Any node can be used as a relay
node to reach other nodes in the network. All nodes are
assumed to have omni-directional antennas, so that if node
i transmits to node j, all nodes closer to i than j will also
receive the transmission (provided line-of-sight exists).

We assume that, for a transmission from node i to j,
the received signal power at j varies as d−α

ij , where

dij =
[
(xi − xj)2 + (yi − yj)2

]1/2

is the Euclidean distance between nodes i and j, (xi, yi)
are the coordinates of node i and α (typically in the range
2 ≤ α ≤ 4) is the channel loss exponent. Consequently, the
transmitter power at i necessary to support the link i →
j, Pij , is proportional (accounting for link and antenna
gains) to dα

ij .
2 Without any loss of generality, we set the

proportionality constant to be equal to 1 and therefore:

Pij = dα
ij (1)

1The accuracy of the proposed heuristic is constrained primarily
by the need to know, with high accuracy, the locations of the nodes.
As such, the “fixed network” restriction can be loosened to include
slowly mobile networks, as long as the node locations can be deter-
mined quickly and accurately.

2Note that the triangle inequality (w.r.t P′
ijs) may not hold be-

cause of the exponent α. The conditions under which the triangle
inequality holds can be obtained using elementary geometry and is
discussed in [1].



Fig. 1. Example digraph. • ch(F ) = {G, H}. • pa(F ) = {D, E}.
• de(D) = {F, G, H}. • nd(D) = {A, B, C, E}.

The power matrix of a network, P, is defined to be an
N ×N symmetric matrix whose (i, j)th element, Pij , rep-
resents the power required to support the link i → j. We
do not assume any constraint on maximum transmitter
power. However, the algorithm we discuss in this paper
can be extended straightforwardly to the case where this
assumption does not hold by redefining the power matrix
such that Pij = ∞ if dα

ij > Y max
i , where Y max

i is the
maximum allowable transmitter power of node i.

Finally, we assume that power expenditures due to sig-
nal reception and processing are negligible (as in [1]) and
therefore the total cost of a broadcast tree is equal to the
sum of the node transmitter powers.

III. Some Definitions
Given a directed graph (digraph) G = (V ,E), where V =

{V1, V2, · · ·VN} is a set of nodes and E = {(Vi, Vj); i �= j}
is a set of directed edges:

• The parents of a node i, denoted by pa(i), is the set
of nodes that are directed to it. If node j is a parent
of node i, then i is a child of j (denoted by ch(j)).
Thus:

j ∈ pa(i) ⇐⇒ i ∈ ch(j)

For example, referring to Figure 1, pa(F ) = {D, E}
and ch(F ) = {G, H}.

• A path between two nodes i and j (denoted by i �→
j) is a sequence i, α0, α1, · · · , αn, j of distinct nodes
such that (αk−1, αk) ∈ E, for all k. In Figure 1,
< B, D, F, H > is a path between nodes B and H .
< H, F, D, B >, however, is not a path between nodes
H and B.

• The descendants of a node i, denoted by de(i), is
defined as the set of nodes {j}, such that there is a
path from i to all nodes in {j}. Thus:

de(i)
�
= {j : i �→ j but not j �→ i}

The non− descendants of a node i, denoted by
nd(i), is defined as:

nd(i)
�
= V \ {i

⋃
de(i)}

In Figure 1, de(D) = {F, G, H} and nd(D) =
{A, B, C, E}.

• The indegree of a node i, denoted by din(i), is de-
fined as the number of edges incident to it. Similarly,
the outdegree of a node i, denoted by dout(i), is de-
fined as the number of edges directed away from it.
In Figure 1, din(D) = 2 and dout(D) = 1.

• In the context of this paper, a node is defined to be a
leaf node if its indegree is 1 and outdegree is 0. For
example, nodes G and H are leaves in Figure 1.

IV. Constructing a digraph from an initial tree
In this section, we explain how to construct a digraph,

given a wireless broadcast tree. First, we define the fol-
lowing sets:

k = transmission step number
NA(k) = set of all nodes reached in transmission

step k (NA(0) = [source])
NN(k) = set of new nodes reached in transmission

step k (NN(0) = [source])
NA(0:k) = set of all nodes reached till transmission

step k =
⋃k

m=0 NA(m) =
⋃k

m=0 NN(m)

We define a tree to be connected if the kth (∀k ≥ 2; for
k = 1, the source is the transmitting node) transmitting
node in the tree has been reached by any of the prior trans-
missions.

Consider the 6-node network in Figure 2, node 6 being
the source.

Fig. 2. Example 6-node network. Node 6 is the source.

The power matrix of the network, for α = 2, is:

P =




0 8.51 2.79 9.51 14.92 10.73
8.51 0 18.80 19.02 0.93 5.75
2.79 18.80 0 5.29 27.18 14.51
9.51 19.02 5.29 0 24.48 6.74

14.92 0.93 27.18 24.48 0 6.85
10.73 5.75 14.51 6.74 6.85 0




(2)

Assume that we are given the following broadcast tree, T .

T = {6 → 4, 4 → 1, 1 → 5} (3)

The nodes reached by the transmissions in T are shown
in Table I. The second column in the table lists the
{transmitting node, destination node} pairs in the broad-
cast tree.



TABLE I

Nodes reached by the transmissions in (3).

k t → d NA(k) NN(k) NA(0:k)

0 - 6 6 6
1 6 → 4 2,4 2,4 2,4,6
2 4 → 1 1,3,6 1,3 1,2,3,4,6
3 1 → 5 2,3,4,5,6 5 1,2,3,4,5,6

A digraph corresponding to (3) is constructed using the
NN(k) entries in column (4) of Table I. From a graph
theoretic viewpoint, using the NN(k) entries in place of
NA(k) corresponds to restricting the indegree of all nodes
(other than the source, whose indegree is 0) to 1. Fig-
ure 3 shows the digraph corresponding to the tree in
(3). Note that while node 4 is reached both by the trans-
missions 6 → 4 and 1 → 5, it is shown as being con-
nected to node 6 only in Figure 3. The solid lines indi-
cate actual transmissions and the dotted lines indicate
implicit transmissions. Node 2, for example, is reached
implicitly by the (actual) transmission 6 → 4. The cost of
the broadcast tree is defined as the sum of the costs of the
actual transmissions in the digraph. For our example, it
is P6,4 + P4,1 + P1,5 = 31.97.

Fig. 3. Digraph corresponding to the broadcast tree in (3). Dashed
lines indicate implicit transmissions. For example, node 2 is reached
implicitly by the transmission 6 → 4. Cost of the tree = P6,4 +
P4,1 + P1,5 = 31.97

With respect to the digraph in Figure 3, node 6 (the
source) is said to be at level 0, nodes 2 and 4 at level
1, nodes 1 and 3 at level 2, and node 5 at level 3.
Clearly, if the maximum level in a digraph so constructed
is MAX LV L, all nodes at level l = MAX LV L will be
leaf nodes. Conversely, the maximum level parent nodes
in such a digraph can occupy is MAX LV L − 1.

V. The r-shrink algorithm: r = 1

Given a transmission from node i to node j, with nodes
α0, α1, · · · and αk covered implicitly, let {α0, α1, · · · , αk,
j} be an ordering of the nodes with respect to their dis-
tance from i. That is, α0 is closest to i, α1 is second closest,
· · · and j is the farthest from i. For r = 1, the r-shrink
operation applied to node i implies a reduction of its trans-
mission power level (or, shrinkage of its transmission ra-
dius) by 1 notch, such that the farthest node now reached

Fig. 4. Illustrating the effect of applying the 1-shrink operation to
node 4 in Figure 3. Since node 3 is the second farthest node from 4,
the edge (4,3) is now represented as a solid line in the graph. Also,
since node 1 is not reached by any of the other transmissions, it is
disconnected from the graph as a result of an 1-shrink operation on
node 4.

is αk instead of j. Similarly, for r = 2, the r-shrink op-
eration implies a reduction of its transmission power level
by 2 notches, such that the farthest node reached is αk−1.
For example, applying the 1-shrink operation to node 4 in
Figure 3 would result in it transmitting to node 3, leaving
node 1 disconnected, as shown in Figure 4. Applying a
2-shrink operation on node 4 would leave nodes 1, 3 and
5 disconnected from the rest of the tree.

Clearly, the r-shrink operation can only be applied to
parent nodes in a digraph and the maximum ‘r’ by which
the transmission radius of a parent node (say, node i, i �=
source) can be shrunk, denoted by rmax(i), is equal to
the number of children of i, or, the outdegree of node i.
If i = source, the maximum ‘r’ by which its transmission
radius can be shrunk is 1 less than its number of children.3

That is:

rmax(i) =
{

dout(i), if i �= source
dout(i) − 1, otherwise (4)

In the discussion of the r-shrink algorithm that follows, we
assume that r = 1.4

Given an initial digraph, the algorithm works by sequen-
tially applying the 1-shrink operation to the parent nodes
in the graph and checking whether the children, which
have been temporarily disconnected from the graph as a
result of the shrinkage operation, can be better accom-
modated from any of their non − descendants, excluding
the current parent. If node i is a child of j, the set of
the non-descendants of i, excluding its current parent, is
given by V \ {nd(i)∪ j}. We will refer to members of such
a set as the foster parents5 of node i, denoted by fpa(i).
Therefore:

fpa(i)
�
= V \ {nd(i) ∪ pa(i)} (5)

For example, in Figure 3, fpa(1) = {6, 2, 3}.
3This prevents the possibility of the source being a leaf in the

graph.
4See [9] for a discussion of the algorithm when r > 1.
5Note that restricting the foster parents to the set of the non-

descendants, excluding its current parent, prevents the occurrence of
cycles in the improved graph.



Incremental and decremental costs are used to deter-
mine whether a temporarily disconnected child retains its
existing parent or is assigned a new parent from the set of
its foster parents.

• For a node i transmitting to node j, the incremental
cost of adding node k to its reach is Pi,k − Pi,j . If
i is a non-transmitting node, the incremental cost of
adding node k to its reach is Pi,k.

• For a node i transmitting to node j, with nodes α0,
α1, · · · , αk (arranged in order of increasing distance
from i) covered implicitly, the decremental cost for let-
ting node j out of its reach is Pi,j−Pi,αk

. If no node is
covered implicitly (i.e., dout(i) = 1), the decremental
cost for letting node j out of its reach is Pi,j .

For example, if we apply the 1-shrink operation to node
1 in Figure 3, the incremental cost of assigning node 5
as a child of node 6 is 0.11 (P6,5 − P6,4), which is much
smaller than the cost of retaining it as a child of node 1
(decremental cost), 14.92. Node 5 can therefore be better
accommodated from 6 instead of 1.

In general, if i ∈ ch(j) and k ∈ fpa(i), i can be better
accommodated from k if:

incremental cost at k < decremental cost at j

If there is more than one foster parent better able to ac-
commodate the temporarily disconnected child, the one
which would lead to a maximum reduction in overall tree
cost is chosen to be the new parent. Ties, if any, are broken
arbitrarily.

The sequence in which the parent nodes are checked
is bottom-up; i.e., parents at level MAX LV L − 1 are
checked first, followed by those at level MAX LV L − 2,
terminating with the source at level 0. If an improvement
is found at any step, the graph is modified and the process
is repeated on the new graph. Figure 5 provides a high
level description of the 1-shrink algorithm.

VI. Simulation Results

We tested the 1-shrink algorithm on 10, 25, 50, 75 and
100-node networks in a 5 × 5 grid. In each case, 50 net-
works were randomly generated and the tree powers aver-
aged to obtain the mean tree power. ‘α’ was chosen to be
equal to 2 for all cases. The mean tree powers for the BIP
solutions are shown in column (2) in Table II. The mean
tree powers for the BIP solutions followed by the sweep al-
gorithm proposed in [1] are shown in column (3). Column
(4) lists the mean tree powers obtained by applying the 1-
shrink procedure to the BIP solutions. Column (5) shows
the average costs of the directed minimum spanning trees
(dMST) obtained using Prim’s algorithm6 and column (6)
represents the mean tree powers obtained by applying the
1-shrink procedure to the dMST’s. Finally, column (7)
shows the best-known results. For N = 10, these were
obtained using an optimal integer programming (IP) ap-
proach discussed in [8]. The freely available LP solver,

6See Chapter 4 of [11] for a description of Prim’s MST algorithm.

1. Given an initial broadcast tree, construct a digraph G, as
explained in Section IV.
2. Set MAX LV L = maximum level in G.
3. Set l = MAX LV L − 1.
4. Set no pa = no. of parent nodes at level l.
5. Set �pal = set of parent nodes at level l.
6. Set n = 1.
7. Apply the 1-shrink operation to the parent node �pal(n).
Check whether its temporarily disconnected child, i, can be
better accommodated from any of the nodes in the set fpa(i).
8. if(better accommodation possible)

/* True if the incremental cost at the foster parent node is
smaller than the decremental cost at �pal(n). */

• Identify the foster parent which will lead to a maximum
reduction in tree cost. Modify G by assigning this node to be
the parent of i.

• Repeat steps 2 to 8 on the new G.
else

if(n < no pa)
/* Not all parent nodes checked at level l */

n = n + 1;
Repeat steps 7 and 8.

else /* All parent nodes checked at level l */
if(l > 0)

l = l − 1;
Repeat steps 4 to 8.

else /* All parent nodes checked at all levels */
Stop and print G. /* End of procedure */

endif
endif

endif

Fig. 5. High level description of the 1-shrink algorithm.

LPSOLVE [12], was used to solve the IP models. For N =
25 and 50, the best known results were obtained using an
Ant Colony System (ACS) approach discussed in [6]. For
N = 75 and 100, the best known results were computed us-
ing a “cluster-merge” variation of the ACS algorithm [10].
Figures in parentheses in columns (3) to (7) represent the
percentage improvement in mean tree power over the BIP
solutions.

It can be seen from Table II that there is a considerable
improvement in tree power if the 1-shrink procedure is
applied to the BIP solutions as opposed to the sweep algo-
rithm. The mean tree powers obtained using the 1-shrink
procedure on BIP solutions are between 5% and 10% of
the best known solutions in all cases. In fact, except for
N = 25, the improved BIP solutions are all within 5-7%
of the best solutions.

Additionally, it may be noted that, while the dMST’s
themselves are approximately 4-6% worse (compare
columns 2 and 5 in Table II) than the BIP solutions, ap-
plying the 1-shrink improvement heuristic on them yields
solutions which are approximately within 2% of the BIP
based solutions for N = 10 and 25, and within 1% for
network sizes 50 and higher (compare columns 4 and 6
in Table II). This is highly encouraging since the fastest
known implementation of Prim’s algorithm using a Fi-
bonacci heap is of complexity O(E + N log2N), compared
to an O(N3) complexity of the BIP algorithm, where E
is the number of edges in the graph and N is the num-



TABLE II

Mean tree powers for • BIP (column 2) • BIP followed by sweep (column 3) • BIP followed by 1-shrink (column 4) • dMST (column 5) •
dMST followed by 1-shrink (column 6) and • best known solutions (column 7). The figures in parentheses in columns (3) to (7) represent

the percentage improvement in mean tree power over the BIP solutions.

N BIP BIP (sweep) BIP (1-shrink) dMST dMST(1-shrink) Best Known
10 11.57 11.08 (−4.23%) 10.60 (−8.38%) 12.09 (+4.50%) 10.84 (−6.30%) 10.01 (−13.48%)
25 12.46 12.14 (−2.57%) 11.25 (−9.71%) 13.09 (+5.06%) 11.43 (−8.27%) 10.21 (−18.05%)
50 11.67 11.45 (−1.89%) 10.68 (−8.48%) 12.29 (+5.31%) 10.76 (−7.80%) 10.04 (−13.97%)
75 11.63 11.37 (−2.23%) 10.67 (−8.25%) 12.10 (+4.04%) 10.80 (−7.14%) 9.88 (−15.05%)
100 11.60 11.35 (−2.16%) 10.55 (−9.05%) 11.97 (+3.19%) 10.66 (−8.10%) 9.87 (−14.91%)

ber of nodes. Interestingly, the gap between the dMST
solutions and the BIP solutions also gets narrower as the
network size increases. Since distributed implementations
of MST algorithms already exist, we are currently work-
ing on a localized version of the 1-shrink algorithm, which
would enable a completely distributed implementation of
the minimum power broadcast tree.

The average number of iterations for which the 1-shrink
algorithm ran before converging are given below:

• N = 10 : 0.78 (BIP-based), 1.76 (dMST-based)
• N = 25 : 2.86 (BIP-based), 6.26 (dMST-based)
• N = 50 : 6.62 (BIP-based), 10.54 (dMST-based)
• N = 75 : 9.78 (BIP-based), 16.82 (dMST-based)
• N = 100 : 13.72 (BIP-based), 21.08 (dMST-based)

Clearly, while computing the dMST is computationally less
expensive than computing the BIP tree, it requires more it-
erations of the improvement procedure to generate similar
quality solutions. This tradeoff between the running times
of the tree-growing and tree-improvement phases needs to
be carefully considered before any algorithm is selected.

We conclude this section by noting the number of times
better solutions were found by the 1-shrink procedure than
the sweep algorithm discussed in [1], when the initial tree
was chosen to be the BIP solution.

• N = 10 : 25, out of 50 instances.
• N = 25 : 46, out of 50 instances.
• N = 50/75/100 : 50, out of 50 instances.

As can be seen from above, the 1-shrink procedure is able
to find a better solution almost always, even for small net-
works such as N = 25.

VII. Conclusion
In this paper, we have presented the 1-shrink algorithm

(a special case of the generalized r-shrink algorithm when
r = 1), a heuristic procedure for improving minimum
power broadcast trees in wireless networks. Simulation
results show that considerably better solutions can be ob-
tained if the proposed procedure is applied to trees grown
using the Broadcast Incremental Power (BIP) algorithm,
instead of the sweep technique discussed in [1]. Similar im-
provements are possible if it is applied to improve directed
minimum spanning trees of the networks.
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